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In this paper, we study the vibratory instability of a cellular flame, propagating 
downwards in a tube, which results from the coupling between the longitudinal 
acoustic modes of the tube and the modification of the cellular flame structure by the 
acceleration of the acoustic field. We assume that the wrinkling of the flame is of 
small amplitude a,, which is the case when the flame burning velocity is just above 
the critical velocity characterizing the Darrieus-Landau instability threshold. We 
demonstrate that, in this case, the growth rate of the corresponding thermoacoustic 
instability, non-dimensionalized with the acoustic frequency, is proportional to 
(k, a,)2, where k, is the critical wavenumber of the cellular instability. If one extends 
the result up to amplitudes of the same order as the wavelength, then one obtains a 
relative growth rate of order unity which is much larger than the one obtained from 
the study of the vibratory instability of the planar flame. As is observed in 
experiments, the theory predicts that the primary sound is generated when the 
amplitude of the cells is sufficiently large that the fundamental tone becomes 
unstable first and that the vibratory instability for the fundamental tone occurs in 
the lower half of the tube. This suggests that the coupling between cellular flame and 
acoustic field studied here is the mechanism for primary sound generation. 

1. Introduction 
The understanding of vibratory instabilities of flames propagating in tubes is of 

great importance in explaining the spontaneous generation of primary sound which 
can occur during flame propagation. In  a typical experiment (Searby 1991), the 
mixture is ignited at the open top of a vertical tube. In a first stage the flame 
propagates downwards with a cellular shape. Then, when the flame reaches the 
centre of the tube, primary sound is generated. The acoustic energy increases and the 
cellular structure disappears. The flat flame oscillates in the acoustic field generated 
by the first instability. Then a parametric instability occurs, i.e. the flame wrinkles 
again with a cell amplitude oscillating at half of the acoustic excitation frequency. 
Finally the amplitude of the cells increases until a turbulent combustion regime 
occurs. 

The parametric instability is now well understood (Markstein 1970) and has been 
clearly confirmed experimentally (Searby & Rochwerger 1991). The important 
problem which remains unsolved is the generation of primary sound and more 
precisely the particular mechanism of the corresponding instability. The general 
theory for thermoacoustic instabilities was developed by Rayleigh in 1878 and can 
be summarized by the following criterion: when heat is released locally and 
periodically in a gaseous medium, an acoustic oscillation is amplified if the oscillating 
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component of pressure and heat flux are in phase. For reviews on this subject, see 
Putnam (1964) and Strehlow (1979). However, for a particular problem the exact 
nature of the coupling between heat sources and acoustic field needs to be identified 
in order to characterize completely the instability. Three basic mechanisms can lead 
to a constructive interaction between acoustic field and flame structure: (i) the 
direct effect of the pressure and temperature of incoming acoustic waves on the flame 
burning velocity (Dunlap 1950); (ii) the penetration of the flame edge into the 
acoustic boundary layer (Kaskan 1953) ; (iii) the variations of flame area caused by 
the acceleration of the acoustic velocity field (Markstein 1970 and Rauschenbakh 
1961). 

The first mechanism has been analysed in detail by Clavin, Pel& & He (1990). 
They determine that the growth rate of the corresponding thermoacoustic instability, 
non-dimensionalized with the acoustic frequency, is proportional to /IM where /3 is 
the dimensionless activation energy of the limiting chemical reaction andM the Mach 
number. It is shown that in the range of parameters where the flat flame is stable 
(M x the direct coupling between pressure variations in the acoustic wave and 
flame structure is weak (PM x lop2) and may bearly overcome the damping 
mechanism due to the radiation of acoustic waves from the open ends of the tube and 
by thermal and viscous dissipation a t  the tube walls. From an experimental point of 
view, the conclusions are less clear. The reason is that the range of parameters for 
which the flat flame is stable with respect to shape deformations is very narrow. 
Flames propagating with a burning velocity larger than 15 cm/s become cellular. 
Flames with a velocity lower than 8 cm/s extinguish. In this range of small burning 
velocities, in agreement with theory, no acoustic instability has been observed 
(Searby 1991). Thus comparison between theory and experiment for this mechanism 
is inconclusive : in the range where theory predicts thermoacoustic instability of a flat 
flame, the flame is already cellular. 

Little is known from a theoretical point of view about the second mechanism 
except that heat flux variations are localized in the acoustic boundary layer. In the 
bulk, the flat flame oscillates with the growing acoustic field and, close to the wall, 
due to the penetration of the flame edge into the boundary layer, the flame shape 
remains almost a t  rest in the frame moving with the mean flame velocity. As a result, 
the part of the flame which penetrates into the boundary layer elongates periodically 
at the acoustic frequency and may act as a heat source interacting constructively 
with the acoustic field. It is expected that when the boundary-layer thickness is 
smaller than the flame dead space, which is the case at sufficiently large frequency, 
this instability mechanism dies out. 

As mentioned by Markstein (1970), the third mechanism would be the most 
important because in the conditions where primary sound is generated, flames are 
sufficiently fast to be cellular (Searby 1991). A preliminary analysis of this 
mechanism was performed by Rauschenback (1961). By using a simplified model for 
flame dynamics he determined that the growth rate of the corresponding 
thermoacoustic instability non-dimensionalized with the acoustic frequency was 
proportional to (a , , l~)~ ,  where k is the wavenumber of the cellular flame and a, the 
amplitude of the cells. Thus, for cellular flames of amplitude of the same order as the 
wavelength the dimensionless growth rate of the instability is of order unity and thus 
larger by a factor 100 than the one found for the first mechanism. The main purpose 
of the paper is to improve the analysis of this mechanism in order to make possible 
comparisons between theory and experiment. For this, we use a more complete 
model for flame dynamics which was found to be successful for the determination of 
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the stability limits of the Darrieus-Landau instability (Pel& & Clavin 1982 ; 
Quinard, Searby & Boyer 1985) and introduce gravity effects into the problem in 
order to analyse a situation close to the cellular instability threshold, where the flame 
cells have a small amplitude, and thus in a range of control parameters where 
calculations can be done analytically. 

First we present the development of the complete analysis and evaluate the orders 
of magnitude of the different physical quantities. Then we develop the flame model 
and explain the basic assumptions that are used. Thirdly, the calculation of the 
transfer function, which is the most important technical part of the analysis, is 
performed analytically in the limit where the steady cellular flame has a small 
amplitude compared to the wavelength of the cells. Then, we determine the growth 
rate of the corresponding thermoacoustic instability and discuss the result found in 
the light of experimental observations. 

2. Development of the analysis 
All the analysis is based on the fact that the heat source, the flame, is localized at 

some position in the tube and interacts with acoustic longitudinal modes, as it is 
observed in experiments. In this case, the flame appears effectively as a piston 
interacting with the acoustic modes of the tube. When the interaction is constructive, 
instability occurs and acoustic energy is self-generated in the tube. The main 
problem is to determine the characteristics of this effective piston, that is pressure 
and longitudinal velocity jumps across the discontinuity surfhe, in order to 
determine the stability limits of the corresponding vibratory instability. 

Consider first the pressure jump across the flame: we assume that the flame 
propagates at small Mach number, which is the case for most experimental 
observations reported. Then, the pressure jump across the flame is of order pU2, 
where U is the flame velocity and is much smaller than the pressure variations in the 
acoustic wave pc2, where c is the velocity of sound. Thus, to a first approximation, 
pressures can be assumed equal on both sides of the flame. This is equivalent to the 
effective piston having a negligible mass, so that during its motion, forces exerted by 
fresh and burned mixtures on the piston are equal. 

Consider now the longitudinal velocity jump across the flame: when a piston is 
non-porous so that the flow cannot penetrate the discontinuity surface, longitudinal 
flow velocities are equal on both sides of the discontinuity surface and equal to the 
piston velocity. The case of the flame is in general different. Flow can penetrate the 
discontinuity surface so that a jump of longitudinal velocity is generated. The 
corresponding relative jump, called in the following the transfer function 
F = (Su,(O) - Su,(O))/Su,(O), where the subscripts 1 and 2 identify respectively the 
fresh and burned mixtures, is determined by an analysis of the flame response 
to an external acoustic field Su,. To evaluate the order of magnitude of this 
transfer function consider a cellular flame of small amplitude a,, and wavenumber 
k , z  = 0.) = a,coskx. Assume that the cellular flame is perturbed by an incoming 
acoustic wave in the fresh gases of amplitude Su,(O) and frequency w .  Introduce the 
corresponding perturbation of the flame amplitude Su,. Because of mass conservation 
across the flame the amplitude of the outgoing wave in the burned gases is 
determined by the relation 

6 u 2 ( 0 ) - ~ u , ( 0 )  = '-1 U,SS, t2 1 



296 P .  Peke' and D .  Rochwerger 

where uL is the flame burning velocity and SS = 2nk2a,Sa, the perturbation of the 
flame area, To evaluate Sa,, notice that the acceleration of the acoustic field causes 
a pressure jump across the cellular flame of magnitude Sn x (p, -p2)  (d(Su,)/dt)) a, is 
generated which induces a local flow around the cells of magnitude Su x Sn/p,u,. If 
one assumes a constant relative flame burning velocity, this secondary flow generates 
a flame shape deformation of amplitude &ao = Su/iw and thus, from ( l ) ,  a relative 
jump of acoustic velocities across the discontinuity proportional to (a, k ) 2 .  

It appears that this factor is related to the relative area of the unperturbed cellular 
flame: S = 1 +a(a, k ) 2 .  The basic reason for this may be understood from the 
Rayleigh criterion which states that thermoacoustic instability results from a 
favourable coupling between heat release and acoustic pressure fluctuations in the 
tube. The rate of heat released per unit cross-sectional area of the tube by the cellular 
flame is q = plu,c,(T,-Tl)S, where and T, are the temperatures of fresh and 
burned mixtures respectively. It follows that the fluctuations of heat release are 
proportional to variations of flame area SS, which are proportional to (a, k ) 2  when the 
amplitude of the cellular flame is weak. Thus one can expect that the relative jump 
of acoustic velocities across the discontinuity, which will determine the strength of 
the thermoacoustic instability, is also proportional to this factor. 

Then the growth rate of the instability can be determined after solving the 
classical acoustic problem of the longitudinal modes with the above-mentioned 
boundary conditions on the flame and additional conditions a t  the tube extremities. 
Acoustic losses are first neglected in the analysis. The ratio between amplitudes of 
the velocity of outgoing and incoming waves is determined as a function of the 
relative position of the flame in the tube. Then the use of the transfer function 
relation allows the amplitude of the acoustic wave to be eliminated and the so-called 
eigenmode equation to  be obtained whose solutions are the possible acoustic 
frequencies of the tube. If one takes F = 0 in the eigenmode equation (no velocity 
jump across the flame) one obtains the classical free eigenmodes of a tube with a free 
piston separating two media of different densities. When the transfer function is 
small, as it is the case for wrinkled flames of small amplitudes, one can expand the 
eigenmodes around the free eigenmodes and obtain the growth rate of the 
thermoacoustical instability as the real part of the perturbed eigenvalue. At the first 
order in the expansion, the growth rate non-dimensionalized with the acoustic 
frequency is found to  be proportional to the transfer function and thus to (ao k ) 2 .  

The instability can develop only when the linear growth rate evaluated above is 
sufficiently large to overcome damping effects. In  principle, these effects can be 
introduced in the analysis (see for instance Clavin et al. 1990). There are two reasons 
why we here evaluate only their order of magnitude. First, in experiments, the factor 
(ao k ) 2  is of order unity and thus much larger than the magnitude of the acoustic 
losses. Second, wavelengths of cellular flames produced in experiments are dependent 
on the initial conditions so that exact stability limits are difficult to obtain 
experimentally. 

There are two kinds of damping effects: heat transfer and viscous friction a t  the 
tube wall, and acoustic radiation losses at the open end of the tube. In  order to obtain 
the order of magnitude of the first mechanism, one evaluates the damping rate of the 
acoustic energy due to viscous friction (in gases the Prandtl number is of order unity, 
so the damping rate due to heat conduction to the wall is of the same magnitude as 
viscous damping). If Su is the amplitude of the acoustic velocity in the tube, the 
energy dissipated in the boundary layer per unit time and unit length of the tube is 
of order of pu(Su)2R/h, where h x (u/w)g and R is the tube radius. The acoustic energy 
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stored in the acoustic mode per unit length of the tube is p ( 6 ~ ) ~ R ~ .  It follows that the 
corresponding damping rate is 1 / ~ ~ ~  x (vo)i/R. Another damping mechanism is due 
to the release of acoustic energy from the open end of the tube. The order of 
magnitude of the corresponding damping rate can be determined in the following 
way. The acoustic power radiated by an oscillating body of volume V(t) is 

dE,/dt x p(d2V/dt2)2/c. 

Here the oscillating body is the column of gas close to the tube exit which enters and 
comes out of the tube periodically. The corresponding volume of gas is V(t) = R206u 
so that the rate of acoustic energy lost by radiation satisfies dE,/dt = - ~ / T ~ , E ,  
where 1 / ~ ~ ,  x is the corresponding damping rate and A the acoustic 
wavelength. These rates increase with the harmonic number, so that the least 
damped mode is the fundamental tone, which is expected to be the first mode to 
become unstable, as has been observed in experiments. If the damping due to the 
radiative losses dominates, which is the case in all but very long thin tubes, then the 
vibratory instability occurs for the fundamental tone o x cl /L,  where L is the length 
of the tube and c1 the sound velocity in the fresh mixture, if the linear growth rate 
mentioned above dominates 1 / ~ ~ ~ ,  i.e. in order of magnitude : 

a, k 2 R / L .  (2) 

3. The model 
When a cellular flame propagates at small Mach number in a tube (figure 1) whose 

diameter is much smaller than its length, two different regions can be distinguished : 
(i) an acoustic region, outside the flame, where the flow is dominated by the one- 
dimensional acoustic waves of the order of A = c/o, and (ii) a region, called the ' inner 
region ' in the following, located around the flame, of thickness A ,  the wavelength of 
the cellular flame, where the flow can be assumed to be incompressible. The ratio of 
the sizes of these two regions, A/A x MwA/u,, is effectively a small parameter when 
the Mach number of the flame is small. 

Consider first the incompressible region in a frame of reference where the flame is 
at  rest, i s .  moving with respect to the laboratory frame with the velocity U = dz,/dt. 
Here zo(t), which defines the new origin of the frame, is the average in space of the 
location of the flame. In this frame and in a region of size of order A around the flame, 
the velocity field w of the flow satisfies the incompressible Euler equation 

v - w  = 0 (3a )  for the conservation of mass, and 

( 3 b )  p(aw/at + (we V) w) = -v7r 
for the dynamics. Here 7r = p-p(g+dU/dt) z is the effective pressure, p the pressure, 
p is equal to p1 in the fresh gas and to p2 in burned gas, and g is the magnitude of the 
acceleration due to gravity assumed positive when the flame propagates downwards. 
At  the interface, the following four boundary conditions must be satisfied: 

P1PV-r - Vi)  - n = P2(W+r - Vi)  - n (4a) 
for mass conservation ; w-1*7 = w+f*7 (4b) 

7r-f + p,(g + dU/dt) z +pl (  ( W-1 - t)i) * n)2 = ~ + f  + p2(9 + dU/dt) z +p2( (w+p - ~ i )  * n)2 
for the equality of tangential velocities ; 

(44 

( W - r - U i ) . n  = UL. (44 

for conservation of the momentum component normal to the interface ; and 
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Burned gases 

z = -rL z = o  z = (1 - r )  L 

Z 
0- 

FIGURE 1. General configuration. 

FIGURE 2. Contours of integration in the incompressible zone. 

Here n and r are respectively the normal and tangent directions to the interface. For 
simplicity we first neglect the curvature effects of the flame, i.e. we assume that the 
flame is an infinitely thin discontinuity surface propagating with constant velocity. 
This simplifying assumption allows us to discuss more clearly the reduction of the 
inner problem to a linear response problem. Then, curvature terms are reintroduced 
for the complete calculation of the transfer function. 

Now consider the acoustic region where, as a first step, the mean position of the 
flame is kept a t  rest in the laboratory frame by adjusting the mean flow velocity of 
the incoming fresh gases to the mean velocity of the flame. We first neglect all effects 
leading to dissipation of acoustic energy in the tube, i.e. viscous friction, conduction 
of heat to the tube walls and acoustic losses at  the open end of the tube. Then the 
longitudinal acoustic field can be written simply as 

dP1,Z = G41,2exp (i4cl,24+Bl,2exP (-iW/C1,24bXP (W, (5a) 

h . 2  = -1/P1,2c,,2{~1,2exP (iw/c1,24-4,2exP (-iW/C1,24) exp ( i 4 ,  (5b) 
where subscripts 1 and 2 denote unburned and burned mixtures respectively. At  this 
spatial scale, the inner incompressible region appears as a discontinuity surface 
separating fresh and burned mixtures. As was mentioned in the introduction, the 
fluctuations of acoustic pressures can be considered as equal on both sides of the 
discontinuity, since the flame propagates at  small Mach number : 

&4(0) = h32(0). (6) 

To determine the jump conditions of velocity field across the discontinuity surface, 
one applies the mass conservation across the inner region, i.e. integrates the 
incompressibility condition over two volumes delimited by the contours shown on 
figure 2. After integration of the incompressibility condition over the volume 
corresponding to the fresh mixture, one obtains the relative flame velocity as 

u,-U= U L S ,  (7) 
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where S is the surface of the flame relative to the area of the cross-section of the tube. 
After integration of the same equation for the second volume and with the help of 
the local mass conservation relation (3a), one obtains the global mass conservation 
relation as 

(8) 

The combination of these relations allows us to obtain the jump of the acoustic field 
across the flame as 

The feedback between a cellular flame and acoustics is now clear. From (7) the flame 
velocity is determined from the acoustic velocities. Then, (4c) determines how the 
flame shape and thus the sudace is affected by the acceleration. Last, (8) determines 
how the acoustic velocities are modified by the variation of the flame surface. 

We consider the classical configuration where the flame propagates from the open 
to the closed end of a tube so that the appropriate boundary conditions at the tube 
extremities are closed end in the fresh mixture 

Pl(U1 - u) = P2(U2 - u). 

~ U 2 ( O ) - ~ U , ( O )  = (PJP2- 1)ULSS. (9) 

z = - r L :  Su,=O; 
open end in the burnt gases 

z = (1-r)L: Sp2 = 0. 

4. Order of magnitude and approximations 
The complete problem is difficult to solve because when posed in the inner region 

it is in general nonlinear and time dependent. However, the problem is simplified if 
one considers weakly cellular flames. Assume first that the flame is flat. Then, (4c) 
indicates that the flame shape is not affected by the acceleration ( z  = 0) .  The flame 
surface is constant and no acoustic energy is generated by the flame during its 
oscillation in the given acoustic field. Consequently the jump of acoustic velocities 
across the discontinuity vanishes and the flame behaves as an ordinary piston, i.e. it 
oscillates with the velocity SU = Su, = Su,. Assume now that the flame is weakly 
cellular, z = ax). Then, (4c) shows that a hydrodynamic pressure jump across the 
flame 65 = (pl-p2)(d(Sul)/dt) ax) is generated which induces a local flow around the 
cells. This secondary flow modulates the flame shape and thus generates a jump of 
acoustic velocities across the discontinuity from relation (8). Thus, i t  is convenient 
to look for a solution in the inner region such as 

E ( 4  = + &I, (1la) 

(11 b )  

wl,2z(z9 z, = UL,B+@1,22+G1,22, (11c) 

Wl,2Z(X,Z)  = @1,2s+%,2z ,  ( 114  

m1,2(x, z, = p1-p1.2($ + d(Sul)/dt) Z+P1,2ui,B +f11,2 +51,2, 

where uB = (pl/p2) uL. The @ are associated with the weakly cellular steady solution. 
Their order of magnitude relative to the steady planar flow is related to E ,  the ratio 
of the amplitude and wavelength of the cellular flame, assumed here to be a small 
parameter. The ZT, are associated with the secondary flow generated around the cells 
by the acoustic perturbation. As shown by (4c), their order of magnitude is related 
to the amplitude of Su, the planar acoustic disturbance, relative to the velocity uL 
of the steady planar flow. In (3) terms involving the non-uniform steady flow are 
small compared to the dominant term and can be neglected in a first approximation. 
For instance, alz ad,,/az and G,, aa,,/az are negligible compared to uL i%,,/az. 
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Similarly, nonlinear terms in the boundary conditions involving the steady cellular 
shape are negligible compared to the linear one. For instance, in the boundary 
condition for the tangential velocities, the term @,, af//az is much smaller than 
uL @/"/a. Thus, with the assumption that the steady flame is weakly cellular, the inner 
problem appears as a linear response problem, i.e. the perturbation of the flame shape 
is a solution of a linear equation with a non-homogeneous t 'erd determined by the 
acoustic forcing. It follows that a t  leading order in E ,  the flow generated by the 
acoustic perturbation satisfies the equations 

(12a) P I ,  Z @ @ ' l ,  ,,/at + UL. B a@,, ,,/a4 = - a%, z/az,  

aG,, ,,/ax + a@,, ,,/ax = 0, (124 

with the following boundary conditions on the non-perturbed planar interface ( z  = 

0) : 
61, = @,,, (134  

(13c) 

clZ + uL @ax = izZx + a&ax, ( 1 3 b )  
agiat - izlZ = 0, 

and 51 +PI gl+P1d(%)ldt E =  5, +pz d + p Z  d(6ul)ldt5 (134 

* 

In  order that the time-derivative term will be conserved in (11) the forcing 
frequencies w must not be too low. More precisely, this term must be larger than the 
nonlinear term ~ l z ~ ~ , , / ~ z  previously neglected, or w 4 m / A ,  where A is the 
wavelength of the cellular flame. Once this linear problem is solved the jump of the 
acoustic velocities across the discontinuity is determined by (8), i.e. 

su,(o)-su,(o) = cz '-1 ) uL- :["'"idx, 
dx dx 

In order to solve the problem further it is necessary to overcome two difficulties. 
First, we need the explicit steady solution for the cellular flame. With the assumption 
that the normal burning flame velocity is constant along the whole surface, only 
approximate solutions have been determined (Zeldovich et al. 1980). Secondly, the 
linear problem posed by (12) and boundary conditions (13) admits general solutions 
(i.e. solutions of the homogeneous problem) whose amplitude grows exponentially 
with time with the Darrieus-Landau growth rate. These solutions overtake the 
particular oscillating solution after a finite time and the linear response problem 
posed above loses its meaning. 

A more realistic situation can be considered if one takes into account the effects of 
flame thickness, i.e. essentially the dependence of the burning flame velocity on flame 
curvature and flow stretch. It is well known that in this case a flat flame can be stable 
for sufficiently low velocity (Quinard et al. 1985). At the threshold of instability, i.e. 
when the flame propagates with a critical velocity uLc determined by the diffusive 
characteristics of the reactive mixture, the flame becomes cellular with the marginal 
wavenumber k,. The shape of the flame is simply 

ax) = a, cos k, x, (15) 

where the flame amplitude a, is arbitrary but small. 
When effects due to flame curvature and flow stretch are taken into account, 

boundary conditions (13) are modified. If the typical size A and timescale of the 
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wrinkling of the flame are respectively much larger than the thickness of the flame 
d and the transit time d /uL ,  one expands the boundary conditions (13) in 8 = d / A  and 
obtains, up to order e2 (PelcB & Clavin 1982): 

and 

where Mu is the dimensionless Markstein length. 

5. The transfer function 
We first determine the perturbation of the flame amplitude, 

6 = Q cos (k, x) exp (iwt) 

in response to the fluctuating acoustic field Bu,exp ( id) .  For this, we eliminate the 
velocity field from (12) by differentiating with respect to the variable r (resp. z )  of 
(12a)  (resp. (12b)) and summing the two resulting equations. Then, the effective 
pressure satisfies the Laplace equation whose solution is 

iil, = cos (k, x) exp ( f k, z )  exp ( id) .  (17) 
After integration of (11) on both sides of the discontinuity, we obtain respectively the 
longitudinal and transverse velocity fields : 

WIZ = - 4 cos (k, z) exp (k, x )  exp (iot) , 
Pl(i@ + UL k) 

sin (k, x) exp (k, z )  exp ( i d )  , 4 
Pl (io + U L  k) 

d,, = 

cos (k, z) exp ( - k, z) +R exp cos (k, x) exp (iwt), (18 c) pz dzz = 
PZ (iw - uB k, 

iw 
dzx = 

pz sin (k, x) exp (- k, z )  +-Rexp sin (k, x )  exp (iot), 
PZ(iw--Bk) U L  k, 

where P,, Pz and R are for the moment unknown complex coefficients. We assume 
that the encrgy of the acoustic field is growing in the tube due to an eventually 
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FIQURE 3. Transfer function as a function of the reduced frequency f2 = wd/u, for Ma = 3. 
The corresponding critical values for the laminar flame speed and the reduced wavenumber are 
uL = 9.9 cm/s, and K ,  = 0.0123. 

favourable coupling between the cellular flame and the acoustic field. It follows that 
the imaginary part of w is negative so that we keep the term proportional to R 
corresponding to the general solution of (12) only on the burned side. Then we apply 
the boundary conditions (16) and obtain a set of four linear equations for the 
coefficients Pl, Pz, R and Q .  After resolution of this system of equations we determine 
Q as 

- iSZC(K,) 6% 
a,-, 

-SZzA(K,)+iSZB(K,)+D(Kc) uL 
Q =  

where SZ = od/uL and K = kd are respectively the dimensionless frequency and 
wavenumber. Here, 

4 K )  = (2-y)+y(Ma-l/ylog(i/i-y))K, 
B(K)  = 2K + 2/ ( 1 - y ) (Ma - log ( 1 / 1 - y ) ) K 2, 

C(K)  = yK( 1 -K(Ma - i / y  log ( 1 / i  -711, 
and 

= Y / ( l  - y ) ~ ( g d / u 3 1  -y ) -K(1  + g d / u 2 , ( 1 - y ) ( ~ a - l / y l o g ( 1 / 1 - y ) )  
+ K 2 (  1 + (2 + y ) / y M a  - 2 / y  log (1 /1-  7 ) ) .  ( 2 0 4  

When the denominator of the right-hand side of (12) vanishes, a and K are related 
by the dispersion relation for the disturbances of the planar flame (see (36) and (37) 
in Clavin et al. 1990). The instability threshold of the planar flame is determined by 
the relations SZ(K,) = 0, dQ/dK(K,) = 0. It follows that D(K,) = 0, 

K ,  = 2(1 - y )  gd/uL1 (21) 
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FIQURE 4. As figure 3 but for Ma = 5 and uL = 12 cm/s, and K ,  = 0.0378. 

and 

which relates the value of the marginal wavenumber to the value of the Markstein 
length at  the instability threshold. 

Then, the transfer function .T = (6u2(0)-Gul(O))/~ul(O) can be easily derived from 
(14) and (19) as 

1 / X C  = 1 + (2  + y ) / y  (Ma - 2 / y  log (1/1- y) ) ,  (22)  

It is proportional to the small parameter where A, = a,/d is the 
dimensionless amplitude of the steady cellular flame. Real and imaginary parts of 
Y / ( K , A , ) 2  are drawn on figures 3 and 4 for rich and poor ethylene-oxygen mixtures 
which correspond to Markstein numbers Mu = 3 and 5 respectively (Quinard & 
Searby 1990). The imaginary part of the transfer function, which plays a decisive role 
in the following discussion on the instability criterion, is found to be positive in the 
whole range of forcing frequencies. 

6. Vibratory instability of the cellular flame 
6.1. Imtability criterion 

Applying the boundary conditions (10) at the tube ends and ( 5 )  to relate the acoustic 
velocity and pressure field at the flame location gives 

Ul(0) = -i/P1 C,P,(O) tan (rX), (244  

and u2(0) = --i/P2C2Pz(O) cot((1 -r)c1/czX)3 (24b)  
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FIQURE 5. Free eigenmodes of the tube as a function of the relative position r of the flame. 

where X is the dimensionless frequency X = w L / c l .  By using the boundary conditions 
(5) and (23) at the flame location, one finally obtains the eigenmode equation: 

pz~z/pl~ltan(rX)tan((l-r)cl/czX)(l+T) = 1. (25) 

From (23), the transfer function is proportional to (K,A,)2,  which in our analysis is 
assumed to be a small parameter. It follows that the solutions of (25) can be 
expanded around the solutions for the free eigenmodes of the tube, X, ,  which are 
given by 

(26) 

The X, are real numbers which characterize the acoustic frequencies of the tube when 
the flame is considered as a passive interface separating two different gaseous media. 
The corresponding eigenmodes are plotted in figure 5 for the first four harmonics. 
Writing X = X,+SX,  one obtains at  first order in the power expansion of (K,A,)2 

p2 c2/p1 c1 tan ( rX , )  tan (( 1 - r )  cl/czXo) = 1. 

- Im (T) tan (rX,) 
r ( l+ tan2  (rX,))+pzc2/p1c1(1 -r)cl/cz(l +tan2((1-r)c,/c,X,) tan2(rX,)’ 

(27) 

Im (SX) = 

As the denominator of the right-hand side of (27) is always positive, instability 
occurs if Im (F) tan (rX,) is positive. If the fundamental tone is considered, tan (rX,) 
is positive for all positions of the flame in the tube. It follows that this mode is always 
unstable since the imaginary part of the transfer function is positive. As is shown on 
figure 6 the growth rate (27) calculated for K,A,  = 1 is maximum in the lower half 
of the tube. When the instability develops, the amplitude of the acoustic field grows, 
as the amplitude of the cellular flame. The analysis breaks down when the perturbed 
flame amplitude becomes of the same order as the flame amplitude itself. As 
mentioned in the first section the growth rate of the instability must overcome the 
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FIGURE 6. Growth rate of the vibratory instability as a function of the relative position r of 
flame in the tube for Ma = 3. 

the 

damping effects due to the heat transfer and viscous friction at  the tube wall. The 
exact damping rate can be computed in principle in a similar way to that in Clavin 
et al. (1990). However, note when comparing theory with experiments, that the 
growth rate (27) contains the undetermined factor (a, k )2  which is difficult to control 
experimentally, and a precise calculation of the damping effects will be too refined 
for the uncertainties of the experiment. One needs to remember simply instability 
criterion (2), i.e. that the cellular thermoacoustic instability occurs if the amplitude 
of the wrinkled flame is sufficiently large. 

6.2. Comparison with experiments 
Before discussing the instability criterion (2) let us recall the experimental 
observations (Searby 1991) : (i) for sufficiently weak mixtures, corresponding to 
laminar flame speeds below about 15 cm/s, the flame propagates to the bottom of the 
tube producing no sound; (ii) for laminar speeds greater than 15-20 cm/s 'low- 
intensity ' acoustic oscillations occur when the flame is in the lower half of the tube ; 
(iii) for laminar flame speeds above 26cm/s the flame accelerates suddenly, 
producing ' high '-intensity acoustic oscillations. 

The theory developed here concerns essentially (i) and (ii), i.e. the generation of 
primary sound in the tube. The reactive mixture considered here is lean propane-air 
mixture for which the Markstein number Ma % 4.5. The corresponding critical 
velocity for the Darrieus-Landau instability is around 11 cm/s. It follows that below 
15 cm/s the flame is still weakly cellular, and thus weakly unstable for the vibratory 
instability since the corresponding growth rate is proportional to (K ,AJ2 .  In this 
case damping effects dominate and no sound is produced. For a larger velocity, the 
flame shape modulation is of larger amplitude and the destabilizing effect can 
overcome damping effects. Considering the growth rate of the destabilizing effect 



306 P .  Peke' and D .  Rochwerger 

versus the relative position r in the tube drawn on figure 7,  it  appears that the 
maximum growth rate occurs in the lower half of the tube, which is in agreement 
with observation (ii). Thus, at least qualitatively, theory is in agreement with 
experimental observations. Quantitative disagreement on the stability limits (27) 
still remains. It is clear that the main discrepancies between theory and experiment 
originate from the flame model. Flames are assumed here to be of small amplitude ; 
in experiments their amplitude is of order unity. Acoustics in the cavity can in 
principle be computed very precisely (see for instance Clavin et al. 1990). In order to 
achieve a quantitative agreement, two further pieces of work are needed. From a 
theoretical point of view, the transfer function for cellular flames with a relative 
amplitude of order unity needs to be computed. This appears for the moment a 
difficult problem if solved with analytical tools. From an experimental point of view, 
cellular flames of well defined wavelength need to be produced. 

7. Conclusion 
We have determined the acoustic transfer function for a weakly cellular flame, i.e. 

when the propagation conditions are close to the threshold of the Darrieus-Landau 
instability. It is found that this transfer function is proportional to (k, aJ2, where k, 
and a, are respectively the wavenumber and the amplitude of the wrinkling of the 
flame at the instability threshold. This is multiplied by a frequency factor whose 
denominator is the dispersion relation for disturbances of a planar flame front, as is 
usual for linear response problems. The consequences are that, as is observed in 
experiments: (i) the primary sound is generated when the amplitude of the 
spontaneous cellular structure of the flame is sufficiently large ; (ii) the fundamental 
tone is the most unstable mode ; (iii) vibratory instability for the fundamental tone 
occurs in the lower half of the tube. Some quantitative disagreement still remains on 
the stability limits of the vibratory instability. 
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Thus the mechanism of variation of the flame area caused by the acceleration of 
the acoustic velocity field appears to be a good candidate for the explanation of the 
generation of primary sound by flames propagating in tubes. 

Much work is still needed to validate this scenario quantitatively: one has to 
control experimentally the wavelength of the cellular flame; and one needs to 
determine transfer functions for cellular flames with a relative amplitude of 
wrinkling of order unity. 
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